Description

GM7109 series is designed to provide all the active function for a step-down (buck) switching regulator, and drives a maximum load current as high as 3A line and load regulations (only for ESOP8 package product). GM7109 is available in fixed output voltages of $3.3 \mathrm{~V}, 5 \mathrm{~V}$, and a versatile Adjustable output version.

These regulators are simple to use and require minimum number of external components. The features include internal frequency compensation and a fixed-frequency oscillator.
The GM7109 is high-efficiency replacements for popular three-terminal linear regulators, and is requiring a smaller heat sink or even no need heat sink.
GM7109 performs well with standard inductors from most of manufacturers, and simplifying the design of switch-mode power supplies. External shutdown is included with $80 \mu \mathrm{~A}$ (typical) standby current. The output switch has cycle-by-cycle current limiting as well as thermal shutdown for full protection under fault conditions.
GM7109 operates at a switching frequency of 150 kHz which allowing smaller size filter components than what would be needed with lower frequency switching regulators.
GM7109 series are available in a standard 8-lead SO package or 8 lead SO package with heat sink.

Features

- Standard SOP8 \& ESOP8 package
- 3.3V, 5V, and Adjustable output versions
- Adjustable version output voltage range 1.23 V to 37 V
- $V_{\text {out }}$ accuracy is to $\pm 2 \%$ under specified input voltage the output load conditions
- Input voltage range up to 40 V
- Requires only 4 external components with High efficiency
- TTL shutdown capability, low power standby mode
- Built-in thermal shutdown, current limit protection
- Uses standard inductors
- 150 kHz fixed frequency internal oscillator

Application

Pre-regulator for linear regulators

High-efficiency step-down buck regulator

On-card/board switching regulators

Positive to negative converter (buck-boost) LCD Monitors

Typical Application Circuits

Marking Information and Pin Configurations (Top View)

SOP8 \& ESOP8

Ordering Information

Ordering Number	Output Voltage	Package	Shipping
GM7109-AS8RG	Adj	SOP8	2500 Units / Reel
GM7109-APS8RG	Adj	ESOP8	2500 Units / Reel
GM7109-3.3S8RG	3.3	SOP8	2500 Units / Reel
GM7109-3.3PS8RG	3.3	ESOP8	2500 Units / Reel
GM7109-5.0S8RG	5.0	SOP8	2500 Units / Reel
GM7109-5.0PS8RG	5.0	ESOP8	2500 Units / Reel

Absolute Maximum Ratings (Note 1)

Rating	Value	Unit
Maximum Supply Voltage	45	V
SD Pin Input Voltage / Feed Back Pin Voltage	-0.3 to $\mathrm{V}_{\text {IN }}+0.3$	V
Output Voltage to Ground (Steady State)	-0.8	V
Power Dissipation	Internally Limited	-
Thermal Resistance - Junction to Ambient $\left(\theta_{\mathrm{JA}}\right)$ 2 square inch of FR-4, double sided, 10z. minimum copper weight, is recommended	36	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Storage Temperature Range	-65 to 150	${ }^{\circ} \mathrm{C}$
Maximum Junction Temperature	+150	${ }^{\circ} \mathrm{C}$
Operating Temperature Range	-40 to 125	${ }^{\circ} \mathrm{C}$
Minimum EDS Rating (Note 2)	2	kV
Lead Temperature (Soldering, 10 sec$)$	+260	${ }^{\circ} \mathrm{C}$

Block Diagram

Electrical Characteristics: GM7109-A

(Specifications with standard type face are for $\mathrm{T}=25^{\circ} \mathrm{C}$, and those with bold face type apply over full Operating Temperature rage)

Parameter	Condition	Symbol	Min	Typ	Max	Unit
Output Voltage	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathbb{I N}} \leq 40 \mathrm{~V}, 0.2 \mathrm{~A} \leq \mathrm{I}$ LOAD $\leq 3 \mathrm{~A}^{*}$	$V_{\text {OUt }}$	1.193	1.230	1.267	V
			1.180		1.280	
Efficiency	$\mathrm{VIN}=12 \mathrm{~V}$, $\operatorname{lLOAD}=3.0 \mathrm{~A}^{*}$, Vout $=3 \mathrm{~V}$	η		77		\%

* For GM7109-A SOP8 package product, I LOAD should not exceed 2.0A.

Electrical Characteristics: GM7109-3.3
(Specifications with standard type face are for $\mathrm{T}=25^{\circ} \mathrm{C}$, and those with bold face type apply over full Operating Temperature rage)

Parameter	Condition	Symbol	Min	Tур	Max	Unit
Output Voltage	$4.75 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V}, 0.2 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A}^{*}$	$\mathrm{V}_{\text {OUT }}$	3.168	3.300	3.432	V
			3.135		3.465	
Efficiency	$\mathrm{VIN}=12 \mathrm{~V}$, ILOAD=3.0A*	η		75		\%

* For GM7109-3.3 SOP8 package product, I LoAd should not exceed 2.0A.

Electrical Characteristics: GM7109-5.0

(Specifications with standard type face are for $\mathrm{T}=25^{\circ} \mathrm{C}$, and those with bold face type apply over full Operating Temperature rage)

Parameter	Condition	Symbol	Min	Typ	Max	Unit
Output Voltage	$7 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V}, 0.2 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A}^{*}$	$V_{\text {OUT }}$	4.800	5.000	5.200	V
			4.7500		5.250	
Efficiency	$\mathrm{VIN}=12 \mathrm{~V}$, $\operatorname{LLOAD}=3.0 \mathrm{~A}^{*}$	η		77		\%

* For GM7109-5.0 SOP8 package product, I LOAD should not exceed 2.0A.

Electrical Characteristics: All Output Voltage Versions

(Specifications with standard type face are for $T_{J}=25^{\circ} \mathrm{C}$, and those with bold face type apply over full Operating Temperature rage. Unless otherwise specified, $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$)

Parameter	Condition	Symbol	Min	Typ	Max	Unit
Feedback Bias Current	V out $=5.0 \mathrm{~V}$ (Adjustable Version Only)	l_{b}	-	10	50 100	nA
Oscillator Frequency	(Note 6)	f_{0}	130 120	150	170 180	kHz
Saturation Voltage	lout $=3 \mathrm{~A}^{*}($ Notes 7, 8)	$\mathrm{V}_{\text {SAT }}$	-	1.4	1.6	V
Max Duty Cycle (ON)	(Note 8)	DC		93	98	\%
Min Duty Cycle (OFF)	(Note 9)	DC		0		\%
Current Limit	Peak Current (Notes 7, 8)	ICL	4.0	5.7	6.9	A
Output Leakage Current	Output $=0 \mathrm{~V}$ (Notes 7, 9, 10)	IL	-	-	2	mA
	Output $=-0.8 \mathrm{~V}$ (Note 10)		-		30	mA
Quiescent Current	(Note 9)	l_{0}	-	5	10	mA
Standby Quiescent Current	ON/OFF Pin $=5 \mathrm{~V}$ (OFF), Note 10	Istby	-	70	200	$\mu \mathrm{A}$
ON/OF Pin Logic Input Level	Low (ON)	V_{IH}	-	1.3	0.6	V
	High (OFF)	$\mathrm{V}_{\text {IL }}$	2.0	1.3	-	
ON/OFF Pin Input Current	$\mathrm{V}_{\text {LOGIC }}=2.5 \mathrm{~V}$ (OFF)	I_{H}		5	15	$\mu \mathrm{A}$
	$\mathrm{V}_{\text {LOGIC }}=0.5 \mathrm{~V}$ (ON)	I L		0.02	5	$\mu \mathrm{A}$

* For SOP8 package products, I IOAD should not exceed 2.0A.

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics.

Note 2: The human body model is a 100 pF capacitor discharged through a $1.5 \mathrm{~K} \Omega$ resistor into each pin.
Note 3: Typical numbers are at $25^{\circ} \mathrm{C}$ and represent the most likely norm.
Note 4: All limits guaranteed at room temperature (standard type face) and at temperature extremes (bold type face). All room temperature limits are 100% production tested. All limits at temperature extremes are guaranteed via correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL).

Note 5: External components such as the catch diode, inductor, input and output capacitors, and voltage programming resistors can affect switching regulator system performance. When the GM7109 is used as shown in the Figure 1 test circuit, system performance will be as shown in system parameters section of Electrical Characteristics.
Note 6: The switching frequency is reduced when the second stage current limit is activated.
Note 7: No diode, inductor or capacitor connected to output pin.
Note 8: Feedback pin removed from output and connected to OV to force the output transistor switch ON.
Note 9: Feedback pin removed from output and connected to 12 V for the $3.3 \mathrm{~V}, 5 \mathrm{~V}$, and the ADJ. version.

Test Circuit and Layout Guidelines

Careful layout is important with any switching regulators. Rapidly switching currents associated with wiring inductance generate voltage transients which can cause problems. To minimize inductance and ground loops, the lengths of the leads indicated by heavy lines in Figure 1\&2 below should be kept as short as possible. Single point grounding (as indicated or ground plane construction should be used for best results. When using the Adjustable version, place the programming resistors as close as possible to GM7109, to keep the sensitive feedback wiring short.

Figure 1 Fixed Ouput Votlage Versions
$\mathrm{C}_{\mathrm{IN}}=220 \mu \mathrm{~F}$, Aluminum Electrolytic
Cout $=470 \mu \mathrm{~F}, 25 \mathrm{~V}$, Aluminum Electrolytic
D1 = Schottky, 5A/40V
L1 $=68 \mu \mathrm{H}$

Figure 2 Adjustable Ouput Votlage Versions
$\mathrm{C}_{\mathrm{IN}}=220 \mu \mathrm{~F}$, Aluminum Electrolytic
$\mathrm{C}_{\text {out }}=470 \mu \mathrm{~F}, 25 \mathrm{~V}$, Aluminum Electrolytic
D1 = Schottky, 5A/40V
$\mathrm{L} 1=68 \mu \mathrm{H}$
$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {REF }}(1+\mathrm{R} 2 / \mathrm{R} 1)$

Typical Performance Characteristics

Figure 3. Switch Saturation Voltage

Figure 5. Dropout Voltage

Figure 7. Shutdown Quiescent Current

Figure 9. SD Pin Current (Sinking)

Figure 4. Switch Current Limit

Figure 6. Operating Quiescent Current

Figure 8. Minimum Operating Supply Voltage

Figure 10. Switching Frequency

Package Outline Dimensions - SOP 8

Package Outline Dimensions - ESOP 8

150KHz, 3A STEP DOWN VOLTAGE SWITCHING REGULATORS

Ordering Number

G	7109	A	$S 8$	R	Q
APM Gamma	Circuit Type	Output Voltage	Package Type	Shipping Type	
		$\begin{aligned} & \text { A: } \operatorname{Adj} \\ & 3.3=3.3 \mathrm{~V} \\ & 5.0=5.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { S8: SOP8 } \\ & \text { PS8: ESOP8 } \end{aligned}$	R: Taping \& Reel T: Tube	G:Green Products

Note:

Green products:

- Lead-free (RoHS compliant)
- Halogen free(Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 1500ppm by weight)

